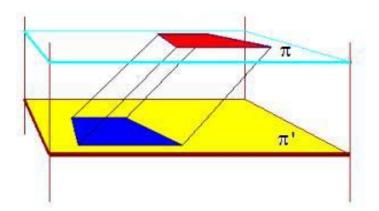


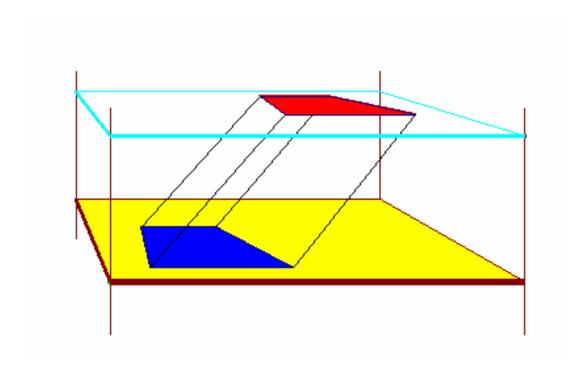
Trasformazioni



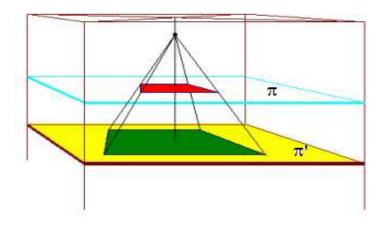
Nel modello fisico, le lastre rettangolari π (trasparente) e π' rappresentano due piani paralleli.

Il quadrilatero appartenente al piano π' si può immaginare come ombra solare di quello appartenente al piano π .

In generale, i raggi del sole (paralleli, rappresentati nel modello da fili tesi) stabiliscono una corrispondenza (prospettività con centro improprio) fra i punti dei piani π e π' : ad ogni punto P di π corrisponde in π' la sua ombra P'.

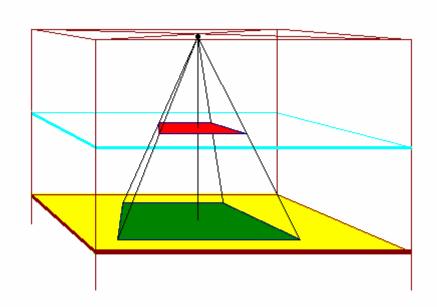


La macchina permette di sovrapporre i due piani con moto continuo, mantenendoli paralleli e senza ruotarli uno rispetto all'altro: durante tale movimento anche i fili tesi (raggi) conservano il loro parallelismo. Quando i piani sono sovrapposti la corrispondenza fra i loro punti P e P' diventa una trasformazione geometrica piana che si chiama **traslazione**.



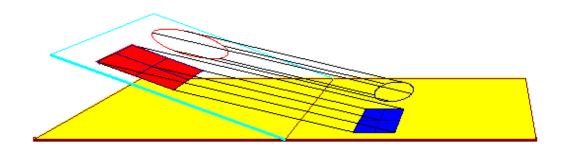
Nel modello fisico, le lastre rettangolari π (trasparente) e π' rappresentano due piani paralleli.

La figura appartenente a π' si può considerare come ombra di quella giacente su π , ottenuta per effetto di raggi luminosi (materializzati nel modello mediante fili tesi) provenienti da una sorgente puntiforme posta in O. In generale, i raggi uscenti da O determinano una corrispondenza (biunivoca: prospettività con centro proprio) tra i punti di π e π' : ogni punto P di π ha come corrispondente in π' la propria ombra P'.

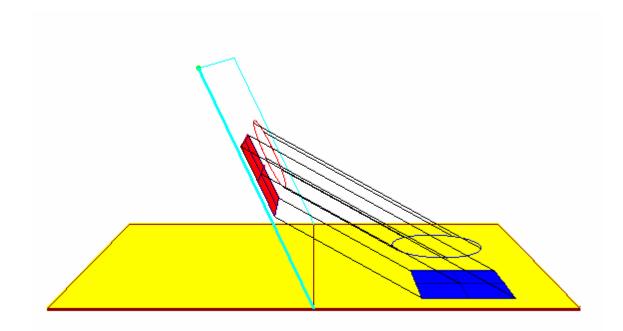


Il meccanismo permette di sovrapporre i due piani con moto continuo, mantenendoli paralleli, evitando ogni rotazione dell'uno rispetto all'altro e conservando l'allineamento con O di ogni coppia P, P' di punti corrispondenti (quest'ultima condizione richiede che, mentre i piani π e π ' diminuiscono la loro distanza, anche O si sposti avvicinandosi ad essi in modo che il rapporto OP'/OP = k rimanga costante).

Quando i piani sono sovrapposti (in tal caso O giace sul loro comune sostegno) la corrispondenza fra i punti P e P' è una trasformazione geometrica piana (**omotetia** di centro O e rapporto k).



Nel modello fisico, le lastre rettangolari π (trasparente) e π' rappresentano due piani incidenti lungo la retta u. Le figure tracciate su π' si possono considerare come ombre solari di quelle giacenti su π . I raggi del sole (materializzati nel modello con fili tesi e supposti paralleli) determinano, in generale, una corrispondenza biunivoca (prospettività con centro improprio) tra π e π' : ad ogni punto P di π corrisponde in π' la sua ombra P'.



Il modello permette di ruotare π attorno alla retta u. Si può osservare che:

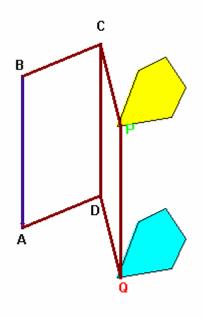
- durante la rotazione i raggi (i fili tesi) rimangono paralleli;
- quando π è sovrapposto a π' , i raggi (i fili) che congiungono due punti corrispondenti qualsiasi sono perpendicolari ad u.

Se π e π' sono sovrapposti, la corrispondenza esistente fra i loro punti P e P' diventa una trasformazione geometrica nota come **stiramento**(particolare omologia affine).

Pantografi

Il meccanismo stabilisce una corrispondenza locale tra i punti di due regioni piane limitate collegandole fisicamente, e incorpora le medesime proprietà che caratterizzano la trasformazione. Lo studio dello strumento permetterà quindi di riconoscere il tipo di trasformazione che esso realizza: mentre il puntatore percorre una figura geometrica disegnata su una delle due regioni, il tracciatore disegna sull'altra la figura corrispondente (trasformata). Puntatore e tracciatore possono essere scambiati fra loro (biunivocità della corrispondenza).

assemblando due sistemi articolati BCP e ADQ (ove BC=AD e CP=DQ) mediante tre aste uguali di lunghezza assegnata AB, CD e PQ. AB è fissata al piano. ABCD e CPQD sono quindi due parallelogrammi articolati. Il punto P (tracciatore) ha due gradi di libertà.

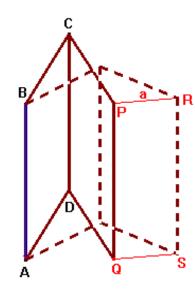


Osservare:

- i gradi di libertà delle cerniere del sistema articolato
- i parametri del sistema che caratterizzano la trasformazione
- i parametri del sistema che caratterizzano le regioni messe in corrispondenza

Si può osservare che:

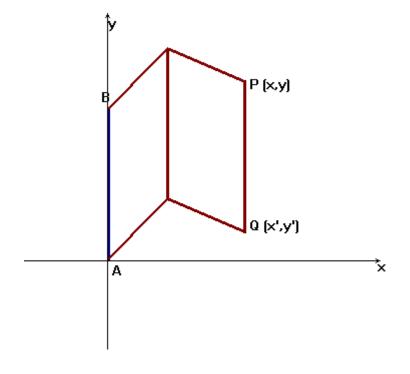
- Quando il puntatore percorre un segmento, il tracciatore descrive un segmento parallelo e uguale: in ogni posizione di R sul segmento a, PQRS è un parallelogramma (lati PQ ed RS paralleli e uguali)
- Viene conservato il verso di percorrenza delle figure
- Non esistono punti uniti , esiste un fascio improprio di rette unite.

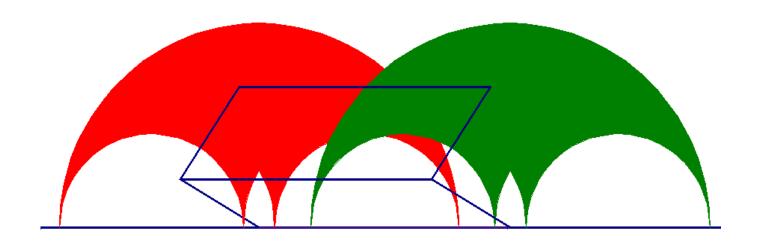


Equazioni della traslazione

Sia h la lunghezza di AB.

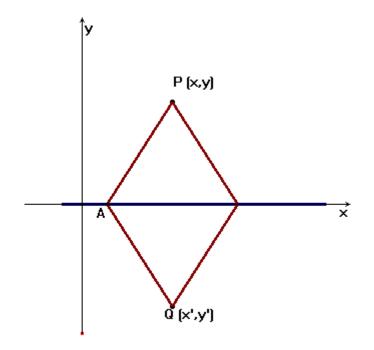
$$\begin{cases} x' = x \\ y' = y - h \end{cases}$$

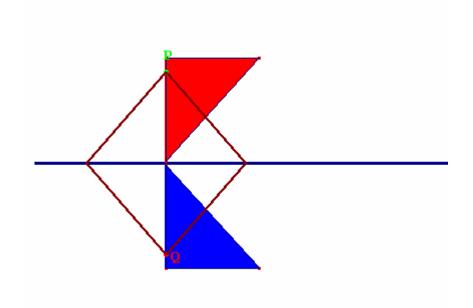




Esempio di forma delle regioni di piano messe in corrispondenza dal puntatore e dal tracciatore, tenendo conto dei vincoli.

Simmetria assiale

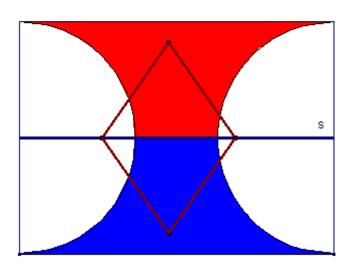




Equazioni:

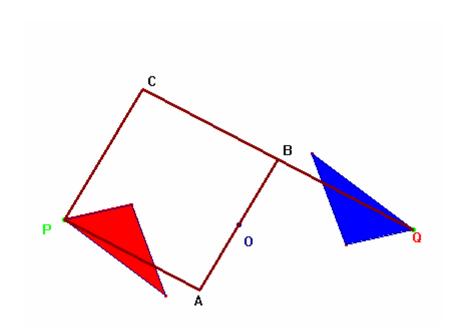
$$\begin{cases} x' = x \\ y' = -y \end{cases}$$

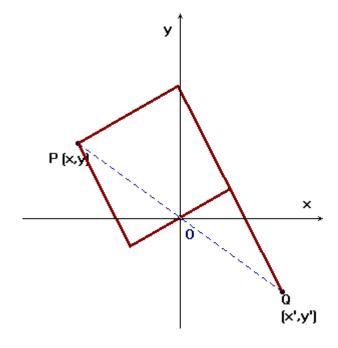
Simmetria assiale



Regioni piane in corrispondenza

Simmetria centrale

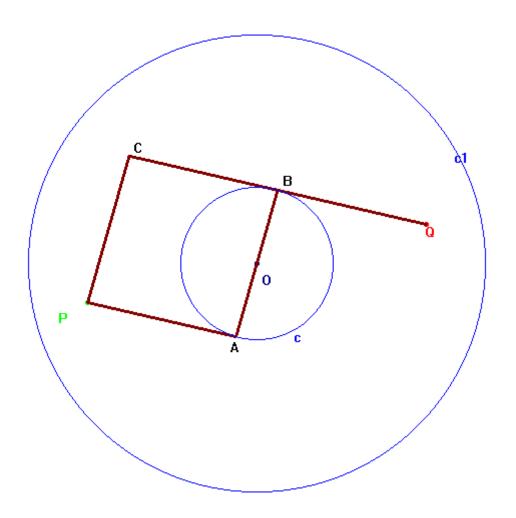




Equazioni:

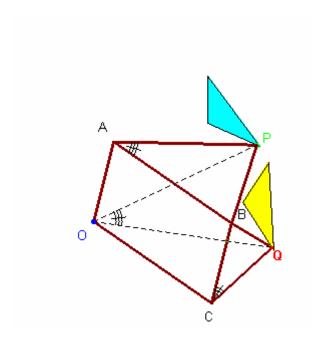
$$\begin{cases} x' = -x \\ y' = -y \end{cases}$$

Simmetria centrale



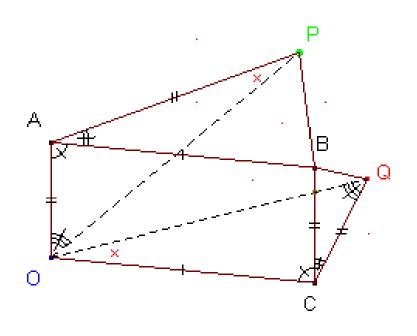
zone di piano messe in corrispondenza: punti interni alla corona circolare individuata dalle circonferenze c e c1

Rotazione



Rotazione

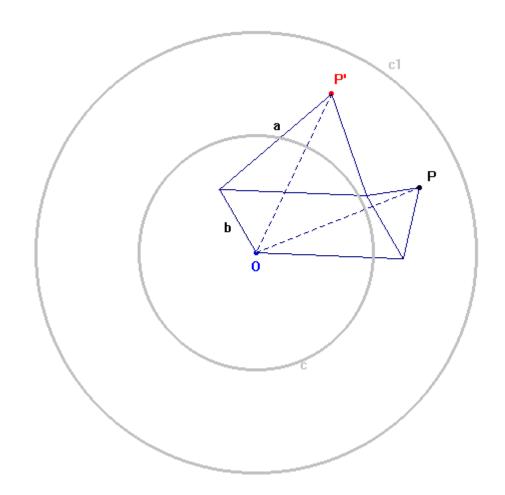
Costruzione:



Dimostrazione:

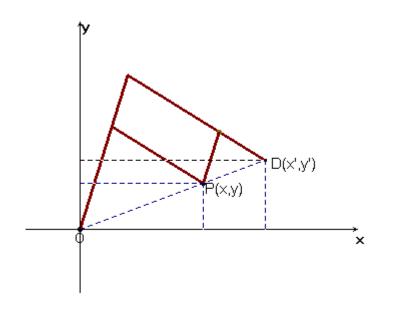
- 1) $P\hat{O}A = Q\hat{C}O$ quindi PO = QO $A\hat{P}O = Q\hat{O}C$ $A\hat{O}P = O\hat{Q}C$
- 2) relazione fra angoli:

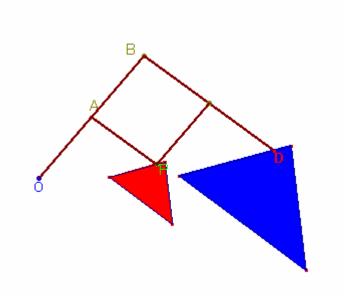
Rotazione



zone di piano messe in corrispondenza: punti interni alla corona circolare individuata dalle circonferenze c e c1

Omotetia





Equazioni:

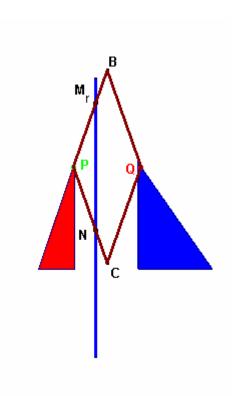
$$\begin{cases} x' = kx \\ y' = ky \end{cases}$$

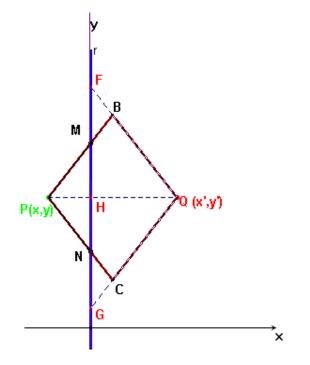
Omotetia

zone di piano messe in corrispondenza: punti interni al cerchio c e punti interni al cerchio c1



Stiramento





Equazioni:

$$\begin{cases} x' = -kx \\ y' = y \end{cases}$$

I triangoli FQG e MPN sono simili:

QH:PH=QF:PM

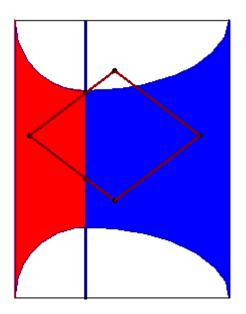
QH:PH=(QB+BM):PM

QB=I PM=d

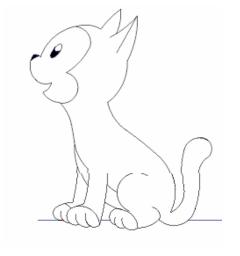
QH: PH = (2I - d): d

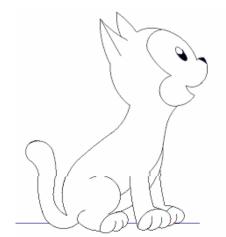
K = (2I - d)/d

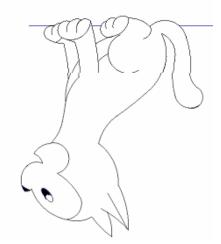
Stiramento

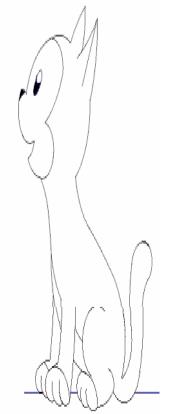


zone di piano messe in corrispondenza









fine

